<table>
<thead>
<tr>
<th>Title</th>
<th>Electromagnetic vector sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>An, Delie</td>
</tr>
<tr>
<td>Citation</td>
<td>An, D. (2009, March). Electromagneti vector sensors. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9293</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2009 The Author(s).</td>
</tr>
</tbody>
</table>
Introduction

A vector sensor consists of three orthogonal dipoles and three orthogonally oriented loops.

- It measures direction of arrival (DOA).
- It measures all six components of incident electromagnetic wave; hence, all available degrees of freedom are exploited.
- It performs better than scalar array antennas in terms of accuracy.

Distributed Vector Sensors

Why distributed?

- Impossibility to fabricate the collocated 6 components at a single point in space.
- Strong mutual coupling among the components.

Low Grazing Angle Applications

- The zenith angle, θ is 90° (the elevation angle is 0°).
- The 3D transformation formula is simplified to 2D.

Experiment Apparatus

- HP 8657A Signal generator
- Transmitter
- 2D vector sensor
- Agilent MSO6114A Oscilloscope
- PC with signal processing software
- Loop antenna

Simulated Result

- Signals
- Incident angles and errors

Project Title: Study of Electromagnetic Vector Sensors for Low Grazing Angle Source Localization
Supervisor: Prof LU Yilong